Pocket Cube Solver

Ri

]

E Bi

=

L

This app will allow you to solve any pocket

cube. Solve It
Input the orientation of the cube by pressing

the squares and then press "solve it" and the

cube will solve (the algorithm will appear here),

You can also try moving the cube with the

buttons provided.
You can also reset the cube with the reset
hutton,

Green is front and the white is right.
i-on a move means anticlockwise and the
single letter means clockwise,

Layout of Interface

* "

lcon of solver®

Pocket Cube Solver

Met made of button

allowing colours to
be changed. (2)

=

= - -

: - Move buttons that
x::ppwﬂllhwywh Sty oo when pressed will
Input the orientation of the cube but change the net. (1)
pressing the squares and then press “solve it = Pressed to start the
and the cube will solve (the algorthm will graph traversal.(4)
appear here).

You can also try making moves on the cube

with the buttons provided,

You can also reset the cube with the reset

button, Button to restart

program,(4)

Message box with text
that can be altered
depending on part of
program running. (3)

+" Pocket Cube

'

M

Bi

—

=

=

e

O

This app will allow you to solve any pocket

cube. Solve |t
Input the orientation of the cube by pressing

the squares and then press "solve it" and the

cube will solve (the algorithr will appear here),

You can also try moving the cube with the

buttons provided,
You can also reset the cube with the reset
button,

Green is front and the white is right.
i on a move means anticlockwise and the
single letter means clockwise,

Pocket Cube Solver

Pocket Cube Solver

e |

=

[]

O

the algorithum to solve the cube is:

LiB B

It took 3 move(s)

The cube was not found in file so
solution was found, the file has not
been found so this solution is not
saved

Creating the Tree

A tree is made up of nodes and edges. The nodes are the states at that time and the edges are how
you get to those states. In the case of solving the pocket cube, the nodes are the orientation of the
cube at that time and the edges are the moves performed on the cube.

A very small part of the tree might graphically look something like this:

Left
Inverted

Front
Inverted

Therefore, the list to solve this cube would be: [Left Inverted, Front Inverted] This would be how the

tree is stored,
When up was the only move that had be performed, the tree’s list would look like this: [Up]

To create the tree, all that is needed is a list of all the possible moves and then these are performed
in the traversal in the same order that they are saved in the tree. This will then create a position of a
cube that can be saved as that node.

' Pseudocode of traversal
Private procedure Traverse (depth)
IF cube solved THEN
exit traversal
EILSE IF end of moves does not = end of order THEN
Remove last value of move and try next in order list
Traverse{depth)
ELSE
IF all values in moves = value at end of order THEN
Delete all values in moves
Add first value of order to moves depth +1 number of times
Traverse(depth +1)
ELSE IF not all values in moves = value at end of order THEN
Delete values of moves until one found that does not = end of order
Add first value of order to moves depth number of times
Traverse{depth)
ENDIF
ENDIF

ENDPROCEDURE

(MoveButton()

r R’

Simi)

L*MME:Buﬂnn{] J

"

Cubei) i
+UpFace: Face()

+LefiFace: Face() I

+FrontFace: Face()

+RightFace: Face()
+BackFace: Face()
+DownFace: Face()

#GetColoursOfFace()

+TumFaceClockwise()

| +TumFaceAntiClockwisel)

|
™) - - -

Square() Face()
=Colour: Sting .
-FaceRow Integer . :g; %3:::{{1
-FaceColumn. Integer #S3: Square()
-CubeRow: Integer 254 Square()
~CubaColumn: Infeger
-bution- Button()

#GetColoursOfFace()
+ChangeCobour() -TumSquaresClockwisa()
+GelColourCiSaguare() \-Tum3quaresAntiClockwise()
+SelColourQiSguarel)
k—ReieshSquaremer{])

#Cube: Cube()
-Topindicator: Message()
-Bottomindicator Message()
-Leflindicator: Message()
-Rightindicator; Message()
-Tithe: Mes=age()
-Yborder. Message()
-xBorder: Message()
-TexiBox: Massage()
-FiButton: MoveBution()
-FButton. MovaBution{)
-BBution: MoveButton()
-BiButton: MoveButton()
-LiButton: MoveButton()
-LEution: MoveButton()
=R Button: MoveButton()
-RiButton: MoveButton()
-UiButton: MoveButton()
-UButton: MaveButton()
-DButton; MoveButton()
-DiBution: MoveButton()
-SolveButton: Button()
-ResetButton: Button()
#CubseCaolours: Array

#FMove()

#FiMove()

#EMovel)

#BiMove()

#lUMove()

#LMove()

#LiMovel)

ERMave()

#RiMove()

#UiMove()

#DMaove()

#DiMovel)

-ResstCube()
+ChangaCubeColours{)
+3etCubeColours{)
+ShortenCubeColourList()
-GetMoveSin)
-MoreThanFourSguares()
-CubainFila

#3olveCube
L.

Tree()

#Current: list)
-QOrder: list()
Moves: list()
-OrniginalCube: list()

~GetOrder()
-TumFaceClockwise()
-TumFaceAntiClockwise()
+ClockvizeTum{)
+AntiCloclkowiseTurni)
-Reverseblovea()
#FMove{)

#FiMove()

#EBMove()

#BiMove()

#LUMove()

#LMove()

#LiMovel)

#RMave()

#RiMowva()
#UiMowve()

#DMove()

#DiMove()
-CheckifSolved])
+StartSolve()
-AllEndOrder()
wlraverseing)

#TaverseQuil)
L

£ Traverseln(self, depth, AllEnd):
if self. AllEndCrder()} and len(self. Mowes)!=0:
temp = self. Moves.pop(-1) # removes last value form moves
eval (self. ReverscMove (Cemp)) # performs the reverse move on the current cube to try new move
del self. Moves[-1] # line above adds the wvalue of the reverse move to the moves list so it is deleted.
self. Traverseln(depth,AllEnd)
2lif self. AllEndCrder(} and lentself.__HDVE5}==D:# minimum value of moves met meaning that the tree must be traversed out again ther
self. TraverseCut (depth+l, Al1End)
elif 1entself.__HDves}!=D:# if mot all at end and the length of move is mot 0:
if self. HMoves[-1] != self.__GIdEI[—l}:# move changed a and then the tree is traversed ocut again
temp = self. Moves.pop(-1) # removes last value form moves
eval (self. ReverscMove (Cemp)) # performs the reverse move on the current cube to try new move
del self. Mowves[-1] # line above adds the wvalue of the reverse move to the moves list so it is deleted.
eval (self. OCrder[self. COrder.index(temp) + 1])#performs next move and adds it to move list
self. TraverseCut (depth,A11End) # calls traverse out as change has been made when traversing in
elif self. Moves[-1]— self.__GIdEI[—l}:# if last wvalue then it is deleted and TraverselIn is called recursively as no change has
temp = self. Moves.pop(-1) # removes last value form moves
eval (self. ReverscMove (Cemp)) # performs the reverse move on the current cube to try new move
del self. Moves[-1] # line above adds the wvalue of the reverse move to the moves list so it is deleted.
self. Traverseln(depth, RllEnd) #calls traverseln recursive

__ BddSeolveToFile (2elf, cube):
flag = False
try:#exception handling

with
x-in file:
line = x.split(':"')

Hh
O
(54

flag = True

open{'soclved cubes.txXt',
file = f.readlines()# read in each line of the file in a list

if str{list({line) [O]) =

¥ adds a solved cube to the file if it is not already in the file.

L 20k - R # opens the file in read mode

¥ each line is made up of the current position and the moves to solved that are separated by

g2elf. OriginalCube:

f.close() % closes file

o ot flag:

if g3elf. Moves!=[] or

file.write (str (cube)

file = open({'soclved cubes.txt',

'a'} # opens file in append mode
$ adds solved cube to file.

Mt Patrfeel . Movea)d o-tknh)

file.close() # closes file

EXCEpT .

print {('cube file not four

nd to save cube'}# if file not found prints out error message in console

v oA

Hierarchy chart of system

Tests to produce

Test Purpose of test Test type input Expected result
no
1 To ensure all Typical Press each button | For each square to
buttons on the net on net 6 times change colour to
work noting the colours | the next colour
that the squares
become each time
2 To find out how the Typical none A 2D list of the
program stores the (Added print line colours of each
cube's position to code to output | square on each
data type) face
3 To ensure that the Erroneous | Press top left An error message
program rejects an button on white saying it cannot be
impossible cube side of the net to solved
pattern make an
impossible cube
pattern
4 To ensure that the Erroneous | Press bottom right | An error message
program rejects an button on red side | saying it cannot be
impossible cube of the net to make | solved
pattern an impossible cube
pattern
5 To ensure that the Typical Create acceptable | For the cube to be
program accepts a position by accepted and

possible pattern

entering the
position of a cube
that is off by one
move. Do this by
pressing Fl button

continue to solve
the cube

o

| *solved cubes (1) - Notepad

Format View Help

Edit

File

1 —
.”\I...}].”Ilc..
e
T ice

™

[R T TR
= = ==
o o 2 @

IR
[y v Y
— = 4
@ d~ @
wowm Uown
= = I =

e T e T Y -

...Il....”ll....”\l....”..l...ll:“ll-..

i W

SS 257 5

o o o g > 0

= E E E DOXE

1.1.1.1m.1

R SR S |

[e e i T

=~

L4 F R« PR« W« P 1]

LT ¥ I T L T = B

e b b]] b

Pt Pt o e P

[r— p— — — p— —

=T R S T R R 4

W o @, W W

L O 0 L £ O

T o B T
L
= i D W s

acd depth +1 number
fevers and dusele All_—al"orthe first possaie Traverse{depin=1)
e

all moves a3t pogsible
maove at that deapth

Mo
dd count nuEnbers of|
f§ mave on current dap reverse and delete E move N current depd " dapth
last possible move la=1 moves last possible move st mnr:l&l;smru TERa0 }
reverse and dalele Count+=1
s Mo (count slarts &1 1)

Fuan Pt move in kst
of order of moves

Traverseidagpth-1)

	After the solve it button is pressed
	algorithm design as pseudocode
	Cube after three moves made
	Interface Design
	Main Screen initial
	Object Oriented UML Class Diagram
	Python code for main traversal algorithm
	Python COde that adds solution to the file of solved cubes
	System Hierarchy Chart
	test plan
	text file storing previous solved cubes - Used in Learning AI part of algorithm
	Tree Traversal Algorithm Design as flowchart
	Tree Traversal explained

